Link to the video : https://www.youtube.com/watch?v=hfsgVrKedJM
Step-1
Create a Remove filter button as shown below
Step-2
Create a bookmark to clear filter and update the bookmark with all the data in that page.
Step-3
Tag that bookmark to the created button as shown below.
Step-4
Now, after the drill through is applied, you can go the page and click
on remove filters to remove the drill through filter and show all the data.
Once Slicer is selected and Close button is clicked, Then the filter is not reflect Since we need to make some changes in the bookmark as shown below
Step-1
Click on the bookmark which is pointing for Close Button.
Step-2
Uncheck the data as shown below
https://www.youtube.com/watch?v=cyOquvfhzNM
https://www.youtube.com/watch?v=MeLaZFst02E
Step-1
Create a measure like below.
Cascading=
import pandas as pd
from azure.storage.blob import BlobServiceClient
import pyodbc
# ------------------ Azure Blob Storage Configuration ------------------
blob_connection_string = 'COnncetionstring'
blob_container_name = 'Blobcontainer Name'
# Connect to Blob Storage
blob_service_client = BlobServiceClient.from_connection_string(blob_connection_string)
container_client = blob_service_client.get_container_client(blob_container_name)
# Fetch file names from Blob Storage
blob_file_names = [blob.name for blob in container_client.list_blobs()]
df_blob_files = pd.DataFrame(blob_file_names, columns=['FileName'])
# ------------------ Azure SQL Database Configuration ------------------
sql_server = 'Server Name'
sql_database = 'Databse'
sql_username = 'user name'
sql_password = 'password'
sql_driver = 'ODBC Driver 17 for SQL Server'
sql_table = 'FileName table'
# Connect to SQL Server and fetch file names
sql_conn_str = f'DRIVER={sql_driver};SERVER={sql_server};DATABASE={sql_database};UID={sql_username};PWD={sql_password}'
sql_query = f'SELECT B2BFileName FROM {sql_table}'
with pyodbc.connect(sql_conn_str) as conn:
df_sql_files = pd.read_sql(sql_query, conn)
# ------------------ Comparison Logic ------------------
# Find files in Blob Storage that are not in SQL Server
missing_files = df_blob_files[~df_blob_files['FileName'].isin(df_sql_files['B2BFileName'])]
# ------------------ Export to Excel ------------------
output_file = r'C:\Users\Desktop\MissingBlobFiles.xlsx'
missing_files.to_excel(output_file, index=False)
print(f"Missing file names exported to: {output_file}")
3.
.isin(...)
This method checks whether each value in
df_blob_files['FileName']
exists in the list of values fromdf_sql_files['B2BFileName']
.It returns a boolean Series —
True
if the file name exists in SQL Server,False
if it doesn't.4.
~
(Tilde Operator)This is a logical NOT operator. It inverts the boolean Series returned by
.isin(...)
.So now, it marks
True
for file names not found in SQL Server.
Please look into the below video to view of reference labels and details in new card visual
Link to video---https://www.youtube.com/watch?v=XTLo64sydck
Link to download pbix File--https://github.com/powerbibro/powerbibro/blob/main/PBI%20-%2020240309%20-%20Reference%20Label%20Updates.pbix